
products
Release 1.2.0

Andrei Lapets

May 25, 2023

CONTENTS

1 Purpose 3

2 Installation and Usage 5
2.1 Examples . 5

3 Development 7
3.1 Documentation . 7
3.2 Testing and Conventions . 7
3.3 Contributions . 8
3.4 Versioning . 8
3.5 Publishing . 8

3.5.1 products module . 8

Python Module Index 11

Index 13

i

ii

products, Release 1.2.0

Simple function for building ensembles of iterables that are disjoint partitions of an overall Cartesian product.

CONTENTS 1

https://badge.fury.io/py/products
https://products.readthedocs.io/en/latest/?badge=latest
https://github.com/lapets/products/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/lapets/products?branch=main

products, Release 1.2.0

2 CONTENTS

CHAPTER

ONE

PURPOSE

Once the itertools.product has been used to build an iterable representing a Cartesian product, it is already too
late to partition that iterable into multiple iterables where each one represents a subset of the product set. Iterables
representing disjoint subsets can, for example, make it easier to employ parallelization when processing the product
set.

The products function in this package constructs a list of independent iterators for a specified number of disjoint
subsets of a product set (in the manner of the parts library), exploiting as much information as is available about the
constituent factor sets of the overall product set in order to do so.

3

https://docs.python.org/3/library/itertools.html#itertools.product
https://en.wikipedia.org/wiki/Cartesian_product
https://products.readthedocs.io/en/1.2.0/_source/products.html#products.products.products
https://docs.python.org/3/glossary.html#term-iterator
https://pypi.org/project/parts

products, Release 1.2.0

4 Chapter 1. Purpose

CHAPTER

TWO

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install products

The library can be imported in the usual ways:

import products
from products import products

2.1 Examples

This library provides an alternative to the built-in Cartesian product function product found in itertools, making it
possible to iterate over multiple disjoint subsets of a Cartesian product (even in parallel). Consider the Cartesian product
below:

>>> from itertools import product
>>> p = product([1, 2], {'a', 'b'}, (False, True))
>>> for t in p:
... print(t)
(1, 'a', False)
(1, 'a', True)
(1, 'b', False)
(1, 'b', True)
(2, 'a', False)
(2, 'a', True)
(2, 'b', False)
(2, 'b', True)

This library makes it possible to create a number of iterators such that each iterator represents a disjoint subset of the
overall Cartesian product. The example below does so for the Cartesian product introduced above, creating four disjoint
subsets (rather than one overall set):

>>> from products import products
>>> ss = products([1, 2], {'a', 'b'}, (True, False), number=4)
>>> for s in ss:
... print(list(s))
[(1, 'a', True), (1, 'a', False)]
[(1, 'b', True), (1, 'b', False)]

(continues on next page)

5

https://pypi.org/project/products
https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.python.org/3/library/itertools.html

products, Release 1.2.0

(continued from previous page)

[(2, 'a', True), (2, 'a', False)]
[(2, 'b', True), (2, 'b', False)]

The iterable corresponding to each subset is independent from the others, making it possible to employ techniques such
parallelization (e.g., using the built-in multiprocessing library) when operating on the elements of the overall Cartesian
product.

6 Chapter 2. Installation and Usage

https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/multiprocessing.html

CHAPTER

THREE

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

3.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

3.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/products/products.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/products

7

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.readthedocs.io

products, Release 1.2.0

3.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

3.4 Versioning

The version number format for this library and the changes to the library associated with version number increments
conform with Semantic Versioning 2.0.0.

3.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged
versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

3.5.1 products module

Simple function for building ensembles of iterators that represent disjoint partitions of an overall Cartesian product.

products.products.products(*collections, number=None)
Accept zero or more Collection instances as arguments and return a Sequence of the specified number of
disjoint subsets of the Cartesian product of the supplied Collection instances. Each subset is represented as
an Iterable and the union of the disjoint subsets is equal to the overall Cartesian product.

Parameters

• collections (Tuple[Collection, . . .]) – Zero or more arguments that represent the factor
sets of the Cartesian product.

• number (Optional[int]) – Number of disjoint subsets to return.

8 Chapter 3. Development

https://github.com/lapets/products
https://semver.org/#semantic-versioning-200
https://pypi.org/project/products
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://en.wikipedia.org/wiki/Cartesian_product
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

products, Release 1.2.0

>>> ss = products(range(1, 3), {'a', 'b'}, (False, True), number=3)
>>> for s in sorted([sorted(list(s)) for s in ss]):
... for t in s:
... print(t)
(1, 'a', False)
(1, 'a', True)
(1, 'b', False)
(1, 'b', True)
(2, 'a', False)
(2, 'a', True)
(2, 'b', False)
(2, 'b', True)

Two additional basic examples are presented below.

>>> (x, y, z) = ([1, 2], ['a', 'b'], [True, False])
>>> [list(s) for s in products(x, y, number=2)]
[[(1, 'a'), (1, 'b')], [(2, 'a'), (2, 'b')]]
>>> for s in [list(s) for s in products(x, y, z, number=2)]:
... print(s)
[(1, 'a', True), (1, 'a', False), (1, 'b', True), (1, 'b', False)]
[(2, 'a', True), (2, 'a', False), (2, 'b', True), (2, 'b', False)]

By default (if the number argument is not assigned a value), the number of disjoint subsets is one. Note that the
union of the disjoint subsets is equivalent to the output of the itertools.product function.

>>> p = itertools.product([1, 2], {'a', 'b'}, (True, False))
>>> ss = products([1, 2], {'a', 'b'}, (True, False))
>>> list(p) == list(list(ss)[0])
True

If no sets are specified, the Cartesian product consists of a single empty tuple. If there is one set, the Cartesian
product consists of a set of one-element tuples. In both cases, a list of disjoint subsets is returned as in all other
cases (even though the number of disjoint subsets may be one).

>>> list(list(products())[0])
[()]
>>> list(list(products([1, 2]))[0])
[(1,), (2,)]

It is possible to confirm that the returned subsets are disjoint, and that the union of the disjoint subsets is the
Cartesian product.

>>> (x, y, z) = ([1, 2], ['a', 'b'], [True, False])
>>> ss = [set(s) for s in products(x, y, z, x, y, z, number=5)]
>>> set([len(ss[i] & ss[j]) for i in range(5) for j in range(5) if i != j])
{0}
>>> s = ss[0] | ss[1] | ss[2] | ss[3] | ss[4]
>>> s == set(itertools.product(x, y, z, x, y, z))
True
>>> len(products(*[[1, 2, 3]]*1000, number=5))
5
>>> ls = [len(products(*[[1, 2]]*1000, number=n)) for n in range(1, 100)]

(continues on next page)

3.5. Publishing 9

https://docs.python.org/3/library/itertools.html#itertools.product

products, Release 1.2.0

(continued from previous page)

>>> ls == list(range(1, 100))
True

If the requested number of disjoint subsets exceeds the number of elements in Cartesian product, the number of
disjoint subsets will be equivalent to the number of elements in the Cartesian product.

>>> len(products([1, 2], ['a', 'b'], number=10))
4

Any attempt to apply this function to arguments that have unsupported types raises an exception.

>>> products([1, 2], number='abc')
Traceback (most recent call last):
...

TypeError: number of disjoint subsets must be an integer
>>> products((i for i in range(3)), number=2)
Traceback (most recent call last):
...

TypeError: arguments must be collections
>>> products([1, 2], number=0)
Traceback (most recent call last):
...

ValueError: number of disjoint subsets must be a positive integer
>>> products([1, 2], number=0)
Traceback (most recent call last):
...

ValueError: number of disjoint subsets must be a positive integer

Return type Sequence[Iterable]

10 Chapter 3. Development

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Iterable

PYTHON MODULE INDEX

p
products.products, 8

11

products, Release 1.2.0

12 Python Module Index

INDEX

M
module

products.products, 8

P
products() (in module products.products), 8
products.products

module, 8

13

	Purpose
	Installation and Usage
	Examples

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	products module

	Python Module Index
	Index

